What have we learnt from clinical trials in invasive candidiasis?

Epidemiology

• *Candida* spp: most common cause of invasive fungal infections (70-90 % mycoses)

- Causes of bloodstream infection: Candida is 4th in frequence (USA) and 7th Europe
- Candidemia incidence: higher in ICUs and patients suffering cancer
- Mortality ~ 40 % (mainly immunocompromised patients)

Delaying the Empiric Treatment of *Candida* Bloodstream Infection until Positive Blood Culture Results Are Obtained: a Potential Risk Factor for Hospital Mortality

Matthew Morrell,¹ Victoria J. Fraser,² and Marin H. Kollef^{1*}

Pulmonary and Critical Care Division¹ and Division of Infectious Diseases,² Washington University School of Medicine, St. Louis, Missouri 63110

→ Administration of
empiric antifungal treatment
12 h after a positive blood
sample for culture is drawn:
greater mortality

 \rightarrow More rapid diagnostic techniques are required

Why is it so difficult to diagnose a systemic candidiasis?

1.- Low sensitivity of the *gold standard* diagnostic technique 20/94 cases of IC demonstrated at autopsy had + blood cultures

(Kami M et al, Br J Haematol 2002 Apr;117(1):40-6)

2.- When positive BC take at least 48 h to detect Candida growth

3.- Clinical suspicion: lack of suggestive specific signs and symptoms

4.- Endogenous origin \rightarrow continuum from colonisation to infection: when does the former finish and the latter begin?

Micology laboratory aid to diagnosis of fungal infections

- Conventional methodologies
 - Direct simple examination (Ex: Calcofluor staining)
 - Culture (lack sensitivity and slowness of turnaround times...)
- Non-conventional methodologies
 - Antigen detection
 - Antibody detection
 - Genetic techniques

Common advantatge: No viability of the microorganism is required

Non-conventional methodologies

- Antigen detection:
 - 1.- Mannan
 - **2.-** β-(1-3) Glucan
 - 3.- Galactomannan
 - 4.- C neoformans capsular antigen
- Antibodies detection:
 - 1.- anti-mannan
 - 2.- anti-*C albicans* germ tube
- Genetic techniques:
 - 1.- Candida PCR
 - 2.- Aspergillus PCR

Non-conventional methodologies

- Antigen detection:
 - 1.- Mannan
 - 2.- β -(1-3) Glucan
 - 3.- Galactomannan
 - 4.- Capsular antigen of *C neoformans*
- Antibodies detection:
 - 1.- anti-mannan
 - 2.- anti-*C albicans* germ tube
- Genetic techniques:
 - 1.- Candida PCR
 - 2.- Aspergillus PCR

Combined detection of mannanaemia and antimannan antibodies as a strategy for the diagnosis of systemic infection caused by pathogenic *Candida* species

BOUALEM SENDID*†, JEAN LOUIS POIROT§, MARC TABOURET‡, ALAIN BONNIN||, DENIS CAILLOT**, DANIEL CAMUS† and DANIEL POULAIN*†

 \rightarrow 204 serum samples analysed, belonging to 63 patients with proven candidiasis

→ All *C albicans* infected patients had at least 1 positive serum for one or both tests (S: Mn+Anti-Mn: 100 %)

 \rightarrow At least 1 serological test positive before yeast growth in 60 % of patients

J. Med. Microbiol. - Vol. 51 (2002), 433-442

Calbicans, C glabrata, C tropicalis

C parapsilosis, C krusei, C kefyr

Prospective evaluation of mannan and anti-mannan antibodies for diagnosis of invasive *Candida* infections in patients with neutropenic fever

Michael Ellis,¹ Basel Al-Ramadi,² Roos Bernsen,³ Jorgen Kristensen,⁴ Hussain Alizadeh⁴ and Ulla Hedstrom⁵

Journal of Medical Microbiology (2009), 58, 606-615

 \rightarrow 12 proven/probable invasive candidiasis, 50 febrile neutropenia

→ optimal overall performance achieved: two consecutive samples for both Mn and Anti-Mn:
S: 73 %, E: 80 %, PPV: 36 % and NPV: 95 %

 \rightarrow High NPV, particularly useful in excluding IC

The use of mannan antigen and anti-mannan antibodies in the diagnosis of invasive candidiasis: recommendations from the Third European Conference on Infections in Leukemia

Małgorzata Mikulska^{1*}, Thierry Calandra², Maurizio Sanguinetti³, Daniel Poulain⁴, Claudio Viscoli⁵, the Third European Conference on Infections in Leukemia Group

In summary:

 \rightarrow Mannan + anti-mannan detection tests improve the chances of early detection of candidiasis due to *C albicans C glabrata, C tropicalis* (S to predict ~ 60 %)

Inconveniences:

- \rightarrow Other species (*C parapsilosis*, *C krusei*): low sensitivity
- \rightarrow ELISA tests: time consuming and expensive

Non-conventional methodologies

- Antigen detection:
 - 1.- Mannan
 - **2.-** β-(1-3) Glucan
 - 3.- Galactomannan
 - 4.- Capsular antigen of C neoformans
- Antibodies detection:
 - 1.- anti-mannan
 - 2.- anti-C albicans germ tube
- Genetic techniques:
 - 1.- Candida PCR
 - 2.- Aspergillus PCR

β-(1-3) Glucan

Major cell wall component of medically important fungi (Candida, Aspergillus and Pneumocystis)

Its detection in blood and normally sterile site body fluids may indicate an invasive fungal infection

Panfungal technique included in EORTC/MSG diagnostic criteria for IFI in 2008

Variable	Fungitec G-Test MK	β-glucan Test Wako	B-G Star	Fungitell	
Manufacturer	Seikagaku Corporation	Wako Pure Chemical	Maruha Corporation	Associates of Cape Cod	
Country	Japan	Japan	Japan	USA	
Approval year	1995	1996	2001	2004	
Assay method	Kinetic chromogenic Kinetic turbidi		Endopoint chromogenic	Kinetic chromogenic	
Sample	Serum or plasma	Serum or plasma	Serum or plasma	Serum	
Pretreatment	Alkali	Dilution and heating	Dilution and heating	Alkali	
Standard β-glucan	Pachyman	Carboxymethyl-curdlan	Lentinan	Pachyman	
Origin of lysate	Tachypleus tridentatus	Limulus polyphemus	Tachypleus tridentatus	Limulus polyphemus	
Cutoff value, pg/mL	20	11	11	60 or 80	
Measurable range, pg/mL	3.9-500	6-600	1.2-120	31.25-500	
Turn-around time, min	30	90	30	40	

Comparison of 4 commercial kits for the serum (1 \rightarrow 3)- β -D-glucan (β -glucan) assay.

Reappraisal of the Serum $(1\rightarrow 3)$ - β -D-Glucan Assay for the Diagnosis of Invasive Fungal Infections— A Study Based on Autopsy Cases from 6 Years

Taminori Obayashi,¹ Kumiko Negishi,¹ Tomokazu Suzuki,¹ and Nobuaki Funata²

Efficacy of BG to detect cases of mycoses:

486 autopsies: 41 cases of IFI and 63 patients with no evidence had been analysed for BG

Contribution of the (1→3)-β-D-Glucan Assay for Diagnosis of Invasive Fungal Infections[∀]

Florence Persat,¹* Stéphane Ranque,² Francis Derouin,³ Annie Michel-Nguyen,² Stéphane Picot,¹ and Annie Sulahian³

Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Parasitologie, Mycologie Médicale et Maladies Tropicales, Lyon, France¹; Laboratoire de Parasitologie-Mycologie, AP-HM Timone, Marseille, France²; and Laboratoire de Parasitologie-Mycologie, Hôpital Saint Louis, Paris, France³

Diagnostic Performance of the $(1\rightarrow 3)$ - β -D-Glucan Assay for Invasive Fungal Disease

Sophia Koo,^{1,2,3} Julie M. Bryar,^{1,4} John H. Page,⁴ Lindsey R. Baden, ^{1,2,3} and Francisco M. Marty^{1,2,3} ¹Brigham and Women's Hospital, ²Dana-Farber Cancer Institute, ³Harvard Medical School, and ⁴Harvard School of Public Health, Boston, Massachusetts

 \rightarrow Clinical usefulness of BG in a large clinical cohort of patients at risk for IFD

 \rightarrow 39 proven IC cases: S of the test 1 week before positive BC (to anticipate diagnosis): 63 %

In summary:

 \rightarrow Serial serum BG detection appears to be a fair diagnostic adjunct for IFI.

Inconveniences:

 \rightarrow Panfungal marker: it does not distinguish between other fungal pathogens (Aspergillus, Fusarium...)

 \rightarrow It is less useful as an early marker of IC than IA

 \rightarrow Known factors associated with FP results: albumin, intravenous inmunoglobulin, hemodyalisis, antibiotics and concomitant bacteriemia (*P aeruginosa*)

Non-conventional methodologies

- Antigen detection:
 - 1.- Mannan
 - 2.- β -(1-3) Glucan
 - 3.- Galactomannan
 - 4.- Capsular antigen of C neoformans
- Antibodies detection:
 - 1.- anti-mannan
 - 2.- anti-*C albicans* germ tube
- Genetic techniques:
 - 1.- Candida PCR
 - 2.- Aspergillus PCR

Candida DNA detection by PCR

Delay in the development of fungal PCR techniques...

1.- High complexity of cell wall in fungus \rightarrow more difficult to disrupt \rightarrow better DNA extracton systems

2.- Fungus are ubiquitus: risk of contamination while processing clinical samples

Filamentous fungi cell wall

JOURNAL OF CLINICAL MICROBIOLOGY, Oct. 2005, p. 5122-5128

Comparison of Six DNA Extraction Methods for Recovery of

Fungal DNA as Assessed by Quantitative PCR

David N. Fredricks,1,3 Improving molecular detection of Candida DNA in Program in Infectious Diseases1 and Pro Whole blood: comparison of seven fungal DNA Seattle, Washington, and Department of Wa Extraction protocols using real-time PCR

Received 12 May 2005/Returned for L. Metwally,¹ D. J. Fairley,¹ P. V. Coyle,¹ R. J. Hay,² S. Hedderwick,³ B. McCloskey,⁴ H. J. O'Neill,¹ C. H. Webb,¹ W. Elbaz³ and R. McMullan¹

Latest technical advances...

1.- Automated DNA extraction systems \rightarrow higher efficiency with less clinical sample manipulation

2.- Real time PCR that excludes additional detection systems (eletrophoresis, ELISA...) \rightarrow less clinical sample manipulation (= contamination risk)

3.- Combination of both: better sensitivity, specificity and quicker turnaround times

Rapid diagnosis of candidaemia by real-time PCR detection of *Candida* DNA in blood samples

Nele Wellinghausen,^{1,2} Dunja Siegel,¹ Juliane Winter¹† and Susanne Gebert¹†

- \rightarrow 384 at risk patients for IC (hematology and ICUs)
- \rightarrow 902 serial blood samples processed for BC and PCR
- \rightarrow 8 proven IC (12 positive BC)

Candida PCR: our experience

→ Real time PCR (*SmartCycler*, Cepheid)

 \rightarrow universal fungal primers ITS3 i ITS4 (amplification of 18S rDNA)

 \rightarrow *Taqman* probe specific for genus Candida

TABLE 1. Probes used for fluorescence detection of DNA						
Probe	Nucleotide sequence (5' to 3') and chemistry ^{a}					
All-CAN-TET CA-FAM CT-TET CP-HEX CG-FAM CK-TET						

Site	Protocol	Sample id	Sample type	FAM/ Result	FAM/ Cycle	TxRed/ Result	TexRed/ Cycle
A2	CANDIDA	albicans	5x10 ⁵	POS	26.43	NEG	0.00
A3	CANDIDA	albicans	5x10 ⁴	POS	29.42	NEG	0.00
A4	CANDIDA	albicans	5x10 ³	POS	32.73	NEG	0.00
A5	CANDIDA	albicans	5x10 ²	POS	35.00	NEG	0.00
A6	CANDIDA	albicans	50	POS	38.92	NEG	0.00
A7	CANDIDA	albicans	5	NEG	0.00	NEG	0.00
A8	CANDIDA	parapsilosis	5x10 ⁵	NEG	0.00	POS	22.69
A9	CANDIDA	parapsilosis	5x10 ⁴	NEG	0.00	POS	26.53
A10	CANDIDA	parapsilosis	5x10 ³	NEG	0.00	POS	29.29
A11	CANDIDA	parapsilosis	5x10 ²	NEG	0.00	POS	32.79
A12	CANDIDA	parapsilosis	50	NEG	0.00	POS	35.19
A13	CANDIDA	parapsilosis	5	NEG	0.00	POS	38.82

Results:

Limits of detection (sensitivity): *C. krusei, C. tropicalis* and *C. parapsilosis*: 5 ufc/ml *C. albicans*: 50 ufc/ml *C. glabrata*: 500 ufc/ml
Especificity:
4/150 blood samples from healthy donors resulted

positive (E: 99 %)

Candida PCR + conventional culture

165 clinical samples analysed for culture and PCR

143 blood samples

9 CSF

4 articular liquid

4 skin biopsies

2 pleural líquids

2 BAL

1 lung biopsy

70 Patients at risk of candidiasis (hematology, ICU)

Blood sample results

16 positive BC samples

Patients:

 \rightarrow 8 proven candidiasis (Blood or sterile liquid positive for culture). All of them had at least 1 positive sample for PCR (S: 100 %)

 \rightarrow In 5/8 IC cases, the PCR anticipated the diagnosis 2-3 days

 \rightarrow 3 cases of "probable candidiasis" (+ PCR /- BC)

Candida PCR project (2011-12)

Evaluation of Magicplex Sepsis real time test (Seegene®) to detect Candida DNA in blood samples belonging to critical patients and patients with febril neutropenia

Hypothesis: The performance of the Candida PCR (*MagicplexTM Sepsis real time test*) in blood samples will increment the diagnostic sensitivity compared to conventional blood culture. For positive BC patients the PCR will provide an earlier diagnosis.

Population to study: critical, oncologic and hematologic patients

To conclude...

 \rightarrow BC is (still) necessary to detect some cases of IC (samples/patients negative for: mannan, anti-mannan, BG or PCR and positive for BC)

 \rightarrow Antigens/antibodies detection tests limitations: BG is a panfungal tool and Mn is not present in many species of Candida

 \rightarrow Next: BC combined with (serial) real time Candida PCR performed in the target population of patients that may benefit the best from these new diagnostic tools

